W474C amino acid substitution affects early processing of the α-subunit of β-hexosaminidase A and is associated with subacute GM2 gangliosidosis

1998 ◽  
Vol 11 (6) ◽  
pp. 432-442 ◽  
Author(s):  
Emmanuel Petroulakis ◽  
Zhimin Cao ◽  
Joe T. R. Clarke ◽  
Don J. Mahuran ◽  
Gregory Lee ◽  
...  
2021 ◽  
Vol 21 ◽  
Author(s):  
Karlaina JL. Osmon ◽  
Patrick Thompson ◽  
Evan Woodley ◽  
Subha Karumuthil-Melethil ◽  
Cliff Heindel ◽  
...  

Background: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of β-hexosaminidase A enzyme (HexA), an α/β-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEXM, has previously been shown to form a stable homodimer, HexM, that hydrolyzes GM2 gangliosides (GM2) in vivo. Materials & Methods: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. Results: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. Conclusion: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.


2000 ◽  
Vol 116 (1) ◽  
pp. 61-74 ◽  
Author(s):  
R. Daniel Peluffo ◽  
José M. Argüello ◽  
Jerry B Lingrel ◽  
Joshua R. Berlin

Na,K -ATPase containing the amino acid substitution glutamate to alanine at position 779 of the α subunit (Glu779Ala) supports a high level of Na-ATPase and electrogenic Na+–Na+ exchange activityin the absence of K +. In microsomal preparations of Glu779Ala enzyme, the Na+ concentration for half maximal activation of Na-ATPase activity was 161 ± 14 mM (n = 3). Furthermore, enzyme activity with 800 mM Na+ was found to be similar in the presence and absence of 20 mM K +. These results showed that Na+, with low affinity, could stimulate enzyme turnover as effectively as K +. To gain further insight into the mechanism of this enzyme activity, HeLa cells expressing Glu779Ala enzyme were voltage clamped with patch electrodes containing 115 mM Na+ during superfusion in K +-free solutions. Electrogenic Na+–Na+ exchange was observed as an ouabain-inhibitable outward current whose amplitude was proportional to extracellular Na+ (Na+o) concentration. At all Na+o concentrations tested (3–148 mM), exchange current was maximal at negative membrane potentials (VM), but decreased as VM became more positive. Analyzing this current at each VM with a Hill equation showed that Na+–Na+ exchange had a high-affinity, low-capacity component with an apparent Na+o affinity at 0 mV (K 00.5) of 13.4 ± 0.6 mM and a low-affinity, high-capacity component with a K 00.5 of 120 ± 13 mM (n = 17). Both high- and low-affinity exchange components were VM dependent, dissipating 30 ± 3% and 82 ± 6% (n = 17) of the membrane dielectric, respectively. The low-affinity, but not the high-affinity exchange component was inhibited with 2 mM free ADP in the patch electrode solution. These results suggest that the high-affinity component of electrogenic Na+–Na+ exchange could be explained by Na+o acting as a low-affinity K + congener; however, the low-affinity component of electrogenic exchange appeared to be due to forward enzyme cycling activated by Na+o binding at a Na+-specific site deep in the membrane dielectric. A pseudo six-state model for the Na,K -ATPase was developed to simulate these data and the results of the accompanying paper (Peluffo, R.D., J.M. Argüello, and J.R. Berlin. 2000. J. Gen. Physiol. 116:47–59). This model showed that alterations in the kinetics of extracellular ion-dependent reactions alone could explain the effects of Glu779Ala substitution on the Na,K -ATPase.


Author(s):  
Renganayaki G. ◽  
Achuthsankar S. Nair

Sequence alignment algorithms and  database search methods use BLOSUM and PAM substitution matrices constructed from general proteins. These de facto matrices are not optimal to align sequences accurately, for the proteins with markedly different compositional bias in the amino acid.   In this work, a new amino acid substitution matrix is calculated for the disorder and low complexity rich region of Hub proteins, based on residue characteristics. Insights into the amino acid background frequencies and the substitution scores obtained from the Hubsm unveils the  residue substitution patterns which differs from commonly used scoring matrices .When comparing the Hub protein sequences for detecting homologs,  the use of this Hubsm matrix yields better results than PAM and BLOSUM matrices. Usage of Hubsm matrix can be optimal in database search and for the construction of more accurate sequence alignments of Hub proteins.


1996 ◽  
Vol 5 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Kunihiko Gekko ◽  
Youjiro Tamura ◽  
Eiji Ohmae ◽  
Hideyuki Hayashi ◽  
Hiroyuki Kagamiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document